
EE 330

Lecture 4

• Yield

• Statistics Review



Feature Size

Feature size is the minimum lateral feature 

size that can be reliably manufactured

Often given as either 

feature size or pitch

Minimum feature size often 

identical for different features

feature 

p
it
c
h spacing 

Extremely challenging to 

decrease minimum feature 

size in a new process

Review from last lecture:



What is meant by “reliably”

Yield is acceptable if circuit performs as 

designed even when a very large number 

of these features are made

If P is the probability that a feature is good

n is the number of uncorrelated features on an IC

Y is the yield

nPY =

n

Yloge

eP =



Example:  How reliable must a 

feature be?
n=5E3

Y=0.9

5E3

0.9log

n

Ylog ee

eeP == =0.999979

ee log 0.9log Y

5E9nP e e= = =0.999999999979

But is n=5000 large enough ?                is Y large enough?

More realistically n=5E9  (or even 5E10)

Extremely high reliability must be achieved in all processing steps to 

obtain acceptable yields in state of the art processes

Consider n=5E9

20 parts in a trillion  or size of a piece of sheetrock relative to area of Iowa



Feature Size

• Typically minimum length of a transistor

• Often also minimum width or spacing of a 

metal interconnect (wire)

• Point of “bragging” by foundries
• Drawn length and actual length differ

• Often specified in terms of pitch
• Pitch is sum of feature size and spacing of same 

feature

• Pitch approximately equal to twice minimum 

feature size



Feature Size Evolution

Mid 70’s 25µ

2005 90nm

2010 20nm

2020 7nm

o
463 A1010101 === − mnm



Gate
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Length
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Length

Gate

Planar 

MOSFET

Planar 

MOSFET

(LOCOS) (STI) FinFET

Tri-Gate

Field Effect Transistors

Dielectric not shown

Review from last lecture:



Planar MOS Transistor

Active

Poly



Planar MOS Transistor

Region of Interest

(Channel)

Gate

Source Drain

W
L

Drawn Length and Width Shown

Henceforth, will assume planar devices unless 

specified to the contrary



MOS Transistor

Gate

Source Drain

W
L

Actual Drain and Source at Edges of Channel



MOS Transistor

Gate

Source Drain

Weff Leff

Effective Width and Length Generally 

Smaller than Drawn Width and Length



Stay Safe and Stay Healthy !



Device and Die Costs
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Characterize the high-volume incremental costs of manufacturing integrated circuits

Example:     Assume manufacturing cost of  an 8” wafer in a 0.25µ process is  $800

Determine the number of minimum-sized transistors that can be 

fabricated on this wafer and the cost per transistor.  Neglect spacing and 

interconnect. 

Solution:

94.15$
112.5

800$
−=== E

En

C
C

trans

wafer

trans

Note:  the device count may be decreased by a factor of 10 or more if

Interconnect and spacing is included but even with this decrease, the 

cost per transistor is still very low!

(520 Billion!)

(Trillion, Tera …1012)



Device and Die Costs

2/5.2$ cmC areaunitper 

Actual integrated op amp will be dramatically less if bonding pads are not needed

Example:  If the die area of the 741 op amp is 1.8mm2 (including bonding pads), determine 

the cost of the silicon needed to fabricate this op amp

( ) 05$.8.1/5.2$ 22

741 •= mmcmC

At $800/8” wafer, it can be easily shown that:



Physical Characteristics of Key 

Semiconductor Materials
o

A7.2
o

A4.5

o

A5.3

Silicon:  Average Atom Spacing 

Lattice Constant

SiO2
Average Atom Spacing

Breakdown Voltage

20KV/cmAir

0

A10mV/to510MV/cmto5 =

Physical size of atoms and molecules place fundamental 

limit on conventional scaling approaches



Defects in a Wafer

Defect

•  Dust particles and other undesirable 

processes cause defects

•  Defects in manufacturing cause yield loss



Yield Issues and Models
• Defects in processing cause yield loss

• The probability of a defect causing a circuit failure 
increases with die area

• The circuit failures associated with these defects are 
termed Hard Faults

• This is the major factor limiting the size of die in 
integrated circuits

• Wafer scale integration has been a “gleam in the eye” of 
designers for 3 decades but the defect problem 
continues to limit the viability of such approaches

• Several different models have been proposed to model 
the hard faults



Yield Issues and Models
• Parametric variations in a process can also 

cause circuit failure or cause circuits to not meet 
desired performance specifications (this is of 
particular concern in analog and mixed-signal 
circuits)

• The circuits failures associated with these 
parametric variations are termed Soft Faults

• Increases in area, judicious layout and routing, 
and clever circuit design techniques can reduce 
the effects of soft faults



Hard Fault Model

Ad

H eY −=

YH is the probability that the die does not have a hard fault

A is the die area

d is the defect density

 (for some older processes, typically 1cm-2 < d < 2cm-2)

 for some newer processes, typically  0.1cm-2<d<1cm-2) 

Industry often closely guards the value of d for their process

Other models, which may be better, have the same general functional form



Some processes have d under  0.1cm-2

• Aug 2020 article

• Defect density in per cm2

• Smaller processes even have better defect density!!

• Note continued reduction predicted as process matures

Start of high 

volume production



Example:

Ad

H eY −=

1
c
m

1cm

Determine the hard yield of a die of area 

1cm2 if the defect density is 1.5cm-2

A=1cm2

d=1.5cm-2

1 1.5

HY e 0.22− •= =

How good must the defect density be if we must 

obtain a 95% yield for the 1cm2 die? 

A=1cm2

YH=0.95

1 d0.95 e− •= d=-ln(0.95) d=0.05cm-2



Soft Fault Model

Soft fault models often dependent upon design 

and application

kA

ρ
σ =

Often the standard deviation of a parameter is 

dependent upon the reciprocal of the square root 

of the parameter sensitive area

ρ is a constant dependent upon the architecture and the process

Ak is the area of the parameter sensitive area



Soft Fault Model

( )=
MAX

MIN

X

X

SOFT dxxfP

PSOFT is the soft fault yield

f(x) is the probability density function of the parameter of interest

XMIN and XMAX define the acceptable range of the parameter of interest

Some circuits may have several parameters that must meet 

performance requirements

XMIN
XMAX



Soft Fault Model

If there are k parameters that must meet parametric 

performance requirements and if the random variables 

characterizing these parameters are uncorrelated, then the 

soft yield is given by


=

=
k

1j

SOFTS j
PY



Overall Yield

If both hard and soft faults affect the yield of 

a circuit, the overall yield is given by the 

expression

SHYYY =



Cost Per Good Die

The manufacturing costs per good die is given by

Y

C
C FabDie
Good =

where CFabDie is the manufacturing costs of a fab die and Y is the yield

There are other costs that must ultimately be included such as testing 

costs, engineering costs, packaging costs,  etc.



Example:  Assume a die has no soft fault 

vulnerability, a die area of 1cm2 and a process has 

a defect density of 1.5cm-2 

a) Determine the hard yield 

b) Determine the manufacturing cost per 

good die if 8” wafers are used and if the 

cost of the wafers is $1200



Solution

Ad

H eY −=

22.0eY
-22 1.5cm1cm == •−

Y

C
C FabDie
Good =

a)

b)

Die

Wafer

Wafer
FabDie A

A

C
C =

( )
82.3$1cm

4in

$1200
C 2

2FabDie ==


37.17$
0.22

$3.82
CGood ==



Do you like statistics ?



Statistics are Real!

Statistics govern what really 

happens throughout much of the 

engineering field!

Statistics are your Friend  !!!!
You might as well know what will happen since statistics characterize what 

WILL happen in the presence of variability in many processes !



Statistics Review

f(x) = Probability Density Function for x

Assume x is a random variable of interest

F(x) = Cumulative Density Function for x

( ) 1=


−=

dx xf
x 
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( )

0




x

xF

x

f

x

1
F

X1

X1



Statistics Review

  ( )
1X

1

x 

P x x f x  dx
=−

 = 

f(x) = Probability Density Function for x

F(x) = Cumulative Density Function for x

  ( )11 XFXxP =

x

x10

f

x

1

x1

F(x1)

( ) ( )
1X

1

x 

F x f x  dx
=−

= 



Statistics Review

  ( )dx xfXxXP
2

1

X

 X

21 =

f(x) = Probability Density Function for x

F(x) = Cumulative Density Function for x

  ( ) ( )1221 XFXFXxXP −=

xn

f

0
x1 x2

x

1

x2

F(x2)

x1

F(x1)



Statistics Review

y

fN

x

f

( ) 1N

y 

f y  dy


=−

=

0 1µ µ+σ

( ) 1
x 

f x  dx


=−

=
x

y




−
=

( ),x N  

( )0,1y N

Theorem 1:  If the random variable x is normally distributed with mean µ and 

standard deviation σ, then                    is also a random variable that is normally 

distributed with mean 0 and standard deviation of 1.  


−
=

x
y

(Normal Distribution and Gaussian Distribution are the same)



Statistics Review



−
=

x
y

x

f

µ µ+σ

( ),x N  

The random part of many parameters of microelectronic circuits is often 

assumed to be Normally distributed and experimental observations confirm that 

this assumption provides close agreement between theoretical and experimental 

results

The mapping                                    is often used to simplify the statistical 

characterization of the random parameters in microelectronic circuits 

x generally is dimensioned,  y is dimensionless



Statistics Review



−
=

x
y

x

f

µ µ+σ

( ),x N  

Example:

x might be the frequency of oscillation of a ring oscillator used for a clock in 

a crystal-less digital circuit, x Gaussian (Normal) 

Dimensions of x :  Hz

Maybe µ=550 MHz    σ=50 MHz

is dimensionless with µy=0   σy=1

y:     N(0,1)



Statistics Review



−
=

x
y

x

f

µ µ+σ

( ),x N  

Example:

x might be the offset voltage of an op amp, x Gaussian (Normal) 

Dimensions of x :  Volts

Typically  µ=0V    σ=10 mV

is dimensionless with µy=0   σy=1

y:     N(0,1)



Background Information

Theorem 2:  If x is a Normal (Gaussian) random variable with mean μ and 

standard deviation σ, then  the probability that x is between x1 and x2 is given 

by 

( ) ( )n 
2 2n

1 1n

x x

x x

p = f x dx = f x dx

x

f

x1 x2

and1 2
1n 2n

x  - μ x  - μ
x = x =

σ σ
where

and where  fn(x) is N(0,1)



Background Information

x

f

x1 x2

xn

fn

0
x1n x2n



Background Information

( )
2n

1n

x

n
x

p f x dx= 

Observation:  The probability that the N(0,1) random variable xn satisfies the 

relationship x1n<xn<x2n is also given by

where Fn(x) is the CDF of  xn. 

xn

fn

0
x1n x2n

( )n 2n n 1np F x F x( )= −

Since the N(0,1) distribution is symmetric around 0, p can also be expressed as 

( ) ( )n 2n n 1np F x 1 F x( )= − − −



Background Information

Observation:  In many electronic circuits, a random variable of interest, x, is 0 

mean Gaussian and the probabilities of interest are characterized by a region 

defined by the magnitude of the random variable (i.e. –x1< x < x1).  

In these cases, if we define

( ) ( ) ( ) ( ) ( )
1 1n

1 1n

x x

1 1 n n 1n n 1n
x x

p x x x f x dx f x dx F x F x
− −

−   = = = − − 

( ) ( )n 1n n 1nF x 1 F x− = −

therefore: ( )n 1np 2F x 1= −

x - 0
x  = 


N

But for the N(0,1) distribution

x

f

0-x1 x1

xN

fn

-x1N 0 x1N

x - 0
x  = 


N

0, = 

then xN is N(0,1)  and



Background Information

( )n 1np 2F x 1= −
xN

fn

-x1N 0 x1N

( )n 2n n 1np F x F x( )= −

xn

fn

0
x1n x2n

Regardless of whether Gaussian performance requirements are asymmetric or 

symmetric, the CDF of the N(0,1) distribution  (i.e. Fn(xn))  can be used to characterize 

yield 



Background Information

Tables of the CDF of the N(0,1) random variable are readily available.  It is 

also available in Matlab, Excel, and a host of other sources.  

http://www.math.unb.ca/~knight/utility/NormTble.htm



Background Information

Tables of the CDF of the N(0,1) random variable are readily available.  It is 

also available in Matlab, Excel, and a host of other sources.  



Background Information

Example:  Determine the probability that the N(0,1) random variable has 

magnitude less than 2.6

x

f

-2.6 2.60

( )np 2F 2 6 1.= −

From the table of the CDF,  Fn(2.6) = 0.9953   so  p=.9906  



Background Information

Example:  Determine the soft yield of an operational  amplifier that has an 

offset voltage requirement of 5mV if the offset voltage has a Gaussian 

distribution with a standard deviation of 2.5mV and a mean of  0V.

x

f

5mV0-5mV

( ) ( ) ( ) ( )
2

N N N N
-2

p = f x dx = F 2 - F -2 =2 F 2 -1

y

fN

-2 20

x - 0mV
y = 

2.5mV

( )Np = 2 F 2 -1 

0mV

2.5mV

 =

 =

It can be shown that the circuit designer has control of the offset voltage of an op amp 

and through architecture and sizing of devices can set the standard deviation of the 

offset voltage at almost any level.  Invariably low offset voltages require larger area. 



Background Information

http://www.math.unb.ca/~knight/utility/NormTble.htm

Example (continued)



Background Information

Determine the soft yield of an operational  amplifier that has an offset voltage 

requirement of 5mV if the offset voltage has a Gaussian distribution with a 

standard deviation of 2.5mV and a mean of  0V.

x

f

5mV0-5mV

y

fN

-2 20

x-0
y = 

2.5mV

p = 2 .9772-1 = .9544

( )NF 2 =0.9772

( )Np = 2 F 2 -1 

Example (continued)



Background Information

Example:  Determine the soft yield of an operational  amplifier that has an 

offset voltage requirement of 5mV if the offset voltage has a Gaussian 

distribution with a standard deviation of 3.5mV and a mean of  0V.

x

f

5mV0-5mV

( ) ( ) ( ) ( )
1.43

N N N N
-1.43

p = f x dx = F 1.43 - F -1.43 =2 F 1.43 -1

y

fN

-1.43 1.430

x - 0mV
y = 

3.5mV

( )Np = 2 F 1.43 -1 

0mV

3.5mV

 =

 =

Repeat the previous example if the designer decided to reduce the area so that the 

standard deviation increased to 3.5 mV 



Background Information

http://www.math.unb.ca/~knight/utility/NormTble.htm

Example (continued)



Background Information

Example:  Determine the soft yield of an operational  amplifier that has an 

offset voltage requirement of 5mV if the offset voltage has a Gaussian 

distribution with a standard deviation of 3.5mV and a mean of  0V.

x

f

5mV0-5mV
y

fN

-1.43 1.430

x - 0mV
y = 

3.5mV

( ) 0 9236Np = 2 F 1.43 -1 =2 . -1=0.847 

0mV

3.5mV

 =

 =

Repeat the previous example if the designer decided to reduce the area so that the 

standard deviation increased to 3.5 mV 

This small change in the design dropped the yield from just over 95% to just 

under 85% 

Statistical analysis is critical for predicting performance capabilities of many ICs  ! 



Many Companies Promote the Real 

Six-Sigma Challenge

Six Sigma (6σ) is a set of techniques and tools for process improvement. It 

was introduced by American engineer Bill Smith while working at Motorola in 

1986.[1][2] A six sigma process is one in which 99.99966% of all opportunities to 

produce some feature of a part are statistically expected to be free of defects.

From Wikipedia   Sept 1  2021

https://en.wikipedia.org/wiki/Bill_Smith_(Motorola_engineer)
https://en.wikipedia.org/wiki/Motorola
https://en.wikipedia.org/wiki/Six_Sigma#cite_note-ssorigin-1
https://en.wikipedia.org/wiki/Six_Sigma#cite_note-Tennant6-2


Many Companies Promote the Real 

Six-Sigma Challenge

From Wikipedia   Sept 1  2021

In 2005 Motorola attributed over $17 billion in savings to Six Sigma.[3]

By the late 1990s, about two-thirds of the Fortune 500 organizations had begun 

Six Sigma initiatives with the aim of reducing costs and improving quality.[6]

https://en.wikipedia.org/wiki/Six_Sigma#cite_note-motsaving-3
https://en.wikipedia.org/wiki/Fortune_500
https://en.wikipedia.org/wiki/Six_Sigma#cite_note-Juran-6


Yield at the Six-Sigma level 

6-6

( ) 162FY N6sigma −=

(Assume a Gaussian distribution)

Y6sigma=0.9999999980

This is approximately 2 defects out of 1 billion parts



Stay Safe and Stay Healthy !



End of Lecture 4
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